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today, along with the associated differences in climate, com-
munity structure and floristics in areas where they occur (J.
Read, R.S.H. & G. S. Hope, manuscript in preparation), supports
the hypothesis’ that early to middle Tertiary climatic conditions
in southeastern Australia may have no modern analogue. The
co-occurrence of these species in the middle Tertiary may also
reflect a more unstable Australian landscape then, as Australia
is now one of the few areas inhabited by Nothofagus which
does not experience recurrent land disturbance'®'*. Regular
disturbance is important for the regeneration of Nothofagus
species in many communities'®
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A knowledge of the conditions under which natural selection can
favour cooperative behaviour among unrelated individuals is
crucial for understanding the evolution of social behaviour, par-
ticularly among humans and other social mammals. In an influen-
tial'™ series of works, Axelrod®'® has argued that reciprocal
cooperation is likely to evolve when individual organisms interact
repeatedly. This conclusion is based, in part, on an evolutionary
analysis of the repeated Prisoner’s Dilemma game which indicates
that strategies which lead to reciprocal cooperation are evolution-
arily stable™'. In this paper, however, we argue that no pure
strategy can be evolutionarily stable in this game. This fact casts
doubt on several of Axelrod’s conclusions about the evolution of
reciprocity.

In Axelrod’s model, pairs of individuals are sampled from a
population and interact repeatedly. The probability that a given
pair interacts more than ¢ times is w’, where 0 < w < 1. During
each interaction individuals choose between cooperation and
defection with the incremental effects on the fitness of each
individual (7, R, P and S) shown in Table 1. Each individual
is further characterized by a strategy which specifies whether it
will cooperate or defect during an interaction depending on the
sequence of interactions up to that point. Strategies can be fixed
rules such as always defect (ALLD), or contingent ones such
as TIT FOR TAT (TFT) which cooperates on the first move,
and then adopts the behaviour used by the other player during
the previous interaction.

Axelrod concludes that when w is sufficiently large, strategies
such as TIT FOR TAT which lead to cooperative reciprocity
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Table 1 Payoff matrix for the single period Prisoner’s Dilemma game

Choice of player 2

Cooperate Defect
Choice of player 1 Cooperate R R S, T
Defect T,S PP

Each cell shows the payofls to the first player and to the second
player, separated by commas, of the pair of choices represented by that
cell. The dilemma exists if T> R> P> S and R>(T+S)/2.

are likely to become common. Such strategies are nice, provok-
able and forgiving, meaning that they are never the first to defect,
punish a defection by another player by immediately defecting,
and answer an act of cooperation by another player by immedi-
ately cooperating. Axelrod bases this conclusion on three
findings: First, nice, provokable and forgiving strategies can
increase in frequency in a population in which ALLD is common
as long as there is some population structure. Second, computer
tournaments indicate that once they get started, nice, provok-
able, forgiving strategies do extremely well against a wide variety
of other strategies. Third, if a nice, provokable, forgiving strategy
becomes common in a population where w is sufficiently high,
Axelrod argues that it will remain common because such
strategies are “collectively stable™. A strategy S, is collectively
stable if for any possible strategy S;:

V(Se}se)BV(SJSe) (1)

where V(S,,|S,.) means the expected fitness of individuals who
use strategy S,, when interacting with individuals using strategy
S,. Axelrod argues that collective stability implies evolutionary
stability, so that when a collectively stable strategy is common
in a population and individuals are paired randomly, no other
rare strategy can invade.

However, collective stability does not imply evolutionary
stability. Suppose that a common strategy S, coexists in a
population with N —1 rare strategies that are maintained in the
population by mutation. Let the frequencies of the N strategies
be py, .., pn- To be evolutionarily stable, the common strategy,
S., must have higher expected fitness than any rare invading
strategy, S; (ref. 1). Assuming that interacting individuals pair
randomly, this requires:

N N
-§1 ij(SeISj)> _; PiV(Silsj) (2)

If for each i, V(S,|S.)> V(S;[S.), then S, is both collectively
and evolutionarily stable because p, » p; (e# j). However, if
equation (1) is satisfied for each i, but for some i, V(S.|S.)=
V(S;IS.), then S, is collectively stable but may not be evolution-
arily stable. This distinction is important in the repeated
Prisoner’s Dilemma game because there are many important
pairs of strategies for which V(S,|S,) = V(S;|S.)and V(S;|S;) =
V(S.|S;). For example, any nice strategy has the same expected
fitness when interacting with any other nice strategy because
neither ever defects. The relative fitness of such pairs of strategies
depends on their interaction with other rare strategies. TFT is
nice and (assuming w is sufficiently large) collectively stable'
Whether it can resist invasion by another nice strategy, for
example TIT FOR TWO TATS (TF2T) which allows two con-
secutive defections before retaliating, depends on how TFT and
TF2T do against rare non-nice strategies.

Using the criterion of evolutionary stability changes several
of Axelrod’s important results. First, when w is large enough,
TFT can be invaded even though it is nice, provokable and
forgiving. Assume that strategies are transmitted according to
a haploid genetic model'*" and that one-way mutation
maintains SUSPICIOUS TIT FOR TAT (STFT), which defects
on the first interaction and then plays TFT, in the population.
Then TF2T can invade TFT whenever V(TF2T|STFT)>
V(TFT|STFT). When w is large enough, this inequality is always
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satisfied because the more tolerant TF2T induces STFT to coop-
erate, whereas the provokable TFT becomes involved in an
endless sequence of reprisals. Second, strategies like TF2T which
are not provokable can persist in a population at high frequency.
If w is sufficiently large, the only population configuration in
this system that is locally stable is a mixture of TF2T and STFT.
The frequency of TF2T at this equilibrium, p, is given by

. (1-w)S+wR—-P

P A=Wy (T+S-R)+wR—P

(3

Thus as w increases, the equilibrium frequency of TF2T
approaches one. For the parameter values used in Axelrod’s
tournaments, p = 0.9863. Thus a population fixed for a nice, but
intolerant morph (TIT FOR TAT) is replaced by a population
which is a mixture of a nice, tolerant morph (TF2T) and a
suspicious and somewhat exploitative morph (STFT). Finally,
if w is large enough, ALLD can be invaded without population
structure. For example, STFT can invade a population in which
ALLD is common and in which TF2T is maintained by one-way
mutation. Neither ALLD nor STFT are ever the first to cooper-
ate; when paired they both defect during every interaction. Thus,
their relative fitness depends on how each fares against TF2T.
For w large enough, STFT has a higher expected payoft against
TF2T than does ALLD, because STFT can be induced to cooper-
ate whereas ALLD cannot. Thus, STFT can invade ALLD. The
only stable equilibrium in this popuation is the mixture of TF2T
and STFT given by equation (3). Although the results in this
paragraph assume that rare variants are maintained by mutation,
similar results obtain if rare variants are maintained by non-
heritable phenotypic variation, or if they are due to repeated
small perturbations in a model without mutation or phenotypic
variation.

In fact, no strategy whose behaviour during interaction f is
uniquely determined by the history of the game up to that point
is evolutionarily stable if

w>min[(T—-R)/(T—P),(P~5)/(R-S)] 4

where min denotes the smaller of the two values in brackets.
To prove this, let S, be a collectively stable strategy and let S;
be a distinct strategy which nonetheless behaves exactly the
same way on each interaction with S, as S, does against itself.
This implies that V(5,;]S.)= V(S.|S.)= V(S.|S,) = V(S,|S)).
Thus, if a third strategy S, exists in the population, S, can be
invaded by S, if V(8,|S.)> V(S.|S,). Because S, and S, are
distinct, there must be some sequence of moves, A, during
interactions 1,...¢—1 such that S, and S, react differently to
S, for the first time on move t. There are two possibilities. First,
suppose S, defects and S; cooperates on move ¢ Let S, be the
strategy that generates the sequence A in response to both S,
and S,, cooperates on move f, and then defects forever in
response to defection by S, and cooperates forever in response
to cooperation by S; on move t S, can be invaded by S,
whenever:

V(S11S2)— V(S.IS) =w " (R-T)+w' (R—P)/(1-w)>0 (5)

orw> (T —R)/(T— P). Next, let S; be a strategy which behaves
exactly like S, for the first t —1 moves, defects on move t, and
then defects forever in response to S,’s defection and cooperates
forever in response to cooperation by S; on move ¢ In this case
S. can be invaded by S; whenever w> (P —S)/(R—S). The
second possibility is that S, cooperates and that S; defects on
move . A similar argument shows that S, can be invaded by S,
for any value of w. This result can be understood in terms of
Axelrod’s insight that if w is large enough, no strategy can be
best against all opponents. When two strategies interact with
each other the same way that they do with themselves, their
relative fitness depends on their interactions with other
strategies. Because neither strategy can be best against every
possible third strategy, no pure strategy can resist invasion by
any combination of strategies.
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This result does not mean that nice, provokable, forgiving
strategies like TFT cannot persist in real populations. In reality,
mutation and phenotypic variation will not generate every poss-
ible combination of invading strategies. Thus, whether nice,
provokable and forgiving strategies can persist at high frequency
in real populations will depend on the actual mix of rare non-nice
strategies maintained in the population by mutation and
phenotypic variation. For example, consider a population in
which TFT is common, and STFT and ALLD are maintained
by mutation. If the frequency of ALLD is low relative to STFT
at mutation-selection equilibrium, TF2T can invade such a
population. If, on the other hand, ALLD is relatively more
common, TF2T cannot invade. Thus, TFT may or may not persist
depending on the relative rates at which mutation creates the
two non-nice variants. More generally our results suggest that
the nature of the selective forces that shape ongoing, potentially
altruistic social interactions depends on the distribution of rare
variants that are created by mutation, environmental variation
and other processes that maintain phenotypic variation.
Although it seems likely that cooperative strategies will predomi-
nate when ongoing interactions persist over long periods of time,
the nature of the contingent strategies that enforce this cooper-
ation may depend on the kinds of non-adaptive varation that
are present.

We thank David Ford for extensive discussion of this work.
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The generation of strong serological responses to protein antigens
in experimental animals usually requires the use of potent
adjuvants, most of which cannot be used in human or veterinary
vaccines because of deleterious side effects™?, Attempting to cir-
cumvent this problem, we have assessed an adjuvant-free antigen-
delivery system based on the hypothesis that antigen coupled to
monoclonal antibodies (mAbs) specific for class II major histocom-
patibility complex (MHC) determinants should be ‘targeted’ onto
antigen-presenting cells, thus facilitating recognition by helper
T cells®. We found that the biotin-binding protein avidin* could
generate a serological response in mice, without adjuvant, when
injected coupled to a biotinylated anti-class I MHC mAb.
Equivalent amounts of avidin mixed with the non-biotinylated form
of the same mADb failed to elicit a response. A targeting effect was
demonstrated at low levels of injected conjugate because only mice
bearing the appropriate class II antigens responded. Responses
were also seen with a protein antigen other than avidin, offering
a new, adjuvant-free approach to subunit vaccine construction.
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